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Model-based interpretation of complex and
variable images

C. J. TAYLOR* , T. F. COOTES, A. LANITIS, G. EDWARDS, P. SMYTH
AND A. C. W. KOTCHEFF

Department of Medical Biophysics, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
(ctaylor@man.ac.uk)

SUMMARY

The ultimate goal of machine vision is image understandingöthe ability not only to recover image
structure but also to know what it represents. By de¢nition, this involves the use of models which describe
and label the expected structure of the world. Over the past decade, model-based vision has been applied
successfully to images of man-made objects. It has proved much more di¤cult to develop model-based
approaches to the interpretation of images of complex and variable structures such as faces or the internal
organs of the human body (as visualized in medical images). In such cases it has been problematic even to
recover image structure reliably, without a model to organize the often noisy and incomplete image
evidence. The key problem is that of variability. To be useful, a model needs to be speci¢cöthat is, to be
capable of representing only `legal'examples of the modelled object(s). It has proved di¤cult to achieve this
whilst allowing for natural variability. Recent developments have overcome this problem; it has been
shown that speci¢c patterns of variability in shape and grey-level appearance can be captured by statistical
models that can be used directly in image interpretation. The details of the approach are outlined and
practical examples from medical image interpretation and face recognition are used to illustrate how
previously intractable problems can now be tackled successfully. It is also interesting to ask whether these
results provide any possible insights into natural vision; for example, we show that the apparent changes in
shape which result from viewing three-dimensional objects from di¡erent viewpoints can be modelled quite
well in two dimensions; this may lend some support to the c̀haracteristic views'model of natural vision.

1. INTRODUCTION

The majority of tasks to which machine vision might
usefully be applied are `hard'. The examples we use in
this paper are from medical image interpretation and
face recognition, though the same considerations apply
to many other domains.

The most obvious reason for the degree of di¤culty
is that most non-trivial applications involve the need
for an automated system to `understand' the images
with which it is presentedöthat is, to recover image
structure and know what it means. This necessarily
involves the use of models which describe and label the
expected structure of the world. Real applications are
also typically characterized by the need to deal with
complex and variable structuresöfaces are a good
exampleöand with images that provide noisy and
possibly incomplete evidenceömedical images are a
good exampleöwhere it is often impossible to interpret
a given image without prior knowledge of anatomy.

Model-based methods o¡er potential solutions to all
these di¤culties. Prior knowledge of the problem can,
in principle, be used to resolve the potential confusion

caused by structural complexity, provide tolerance to
noisy or missing data, and provide a means of labelling
the recovered structures.We would like to apply knowl-
edge of the expected shapes of structures, their spatial
relationships, and their grey-level appearance to
restrict our automated system to `plausible' interpreta-
tions.

Of particular interest are generative modelsöthat is,
models su¤ciently complete that they are able to
generate realistic images of target objects. An example
would be a face model capable of generating convincing
images of any individual, changing their pose, expres-
sion and so on. Using such a model, image
interpretation can be formulated as a matching
problem: given an image to interpret, structures can
be located and labelled by adjusting the model's para-
meters in such a way that it generates an `imagined
image' which is as similar as possible to the real thing.

Because real applications often involve dealing with
classes of objects which are not identicalöfor example,
facesöwe need to deal with variability.This leads natu-
rally to the idea of deformable modelsömodels which
maintain the essential characteristics of the class of
objects they represent, but which can deform to ¢t a
range of examples. There are two main characteristics
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we would like such models to possess. First, they should
be generalöthat is, they should be capable of gener-
ating any plausible example of the class they represent.
Second, and crucially, they should be speci¢cöthat is,
they should only be capable of generating `legal' exam-
plesöbecause, as we noted earlier, the whole point of
using a model-based approach is to limit the attention
of our system to plausible interpretations. In order to
obtain speci¢c models of variable objects, we need to
acquire knowledge of how they vary.
Various approaches to modelling variability have

been described previously. The most common general
approach is to allow a prototype to vary according to a
physical model. Kass et al. (1987) describe `snakes'
which deform elastically to ¢t shape contours. Bajcsy
& Kovacic (1989) describe a volume model (of the
brain) that also deforms elastically to generate new
examples. Christensen et al. (1995) describe a viscous
£ow model of deformation which they also apply to the
brain. Park et al. (1996) and Pentland & Sclaro¡ (1991)
both represent prototype objects using ¢nite element
methods and describe variability in terms of vibrational
modes. Alternative approaches include representation
of shapes using sums of trigonometric functions with
variable coe¤cients (Scott 1987; Staib & Duncan
1992) and parameterized models, hand-crafted for
particular applications (Yuille et al. 1992; Lipson et al.
1990).

All of these methods can produce models which are
general but they do not guarantee speci¢city. This can
only be achieved by learning how the appearance of a
class of objects can vary, from a set of examples. Figure
1 provides a simple illustration of why this is the case.
Suppose we have two classes of objectöapples and
balls. Now let us consider a new example (marked
with a `?') and ask if it is an apple or a ball. Intuitively
we would say that it was an apple. To come to this
conclusion we are using learnt knowledge of how the
two classes vary. Let us investigate what is happening
by working in `shape space'öa space in which each
point represents a particular shape, and metrically
similar shapes are represented by nearby points. If we
took many examples of our two classes and plotted
them in this space we might expect distributions
similar to those shown in the ¢gure. The distribution
of ball shapes is tighter because the apples are far

more variable in shape than the balls. Now consider
our new example; it is closer to the average ball than
to the average appleöin other words, it could more
easily be deformed into a prototype ball than into a
prototype apple. It is clear, however, that taking the
observed distributions of shapes into account, we
should conclude that the object is an example of an
apple. In general, we can only acquire such knowledge
from a set of examples. This suggests a statistical
approach to modelling appearance.

Prior to our work in this area, Grenander & Miller
(1993) and Mardia et al. (1991) had described statistical
models of shape.These were, however, di¤cult to use in
automated image interpretation. Goodall (1991) and
Bookstein (1989) had used statistical techniques for
morphometric analysis, but did not address the
problem of automated interpretation. Kirby & Sirovich
(1990) had described statistical modelling of grey-level
appearance (particularly for face images) but did not
address shape variability.

In the remainder of this paper we (i) outline our
approach to modelling shapes, spatial relationships
and grey-level appearance, (ii) show how these models
can be used in image interpretation, (iii) describe prac-
tical applications of the approach in medical image
interpretation and face recognition, (iv) discuss the
strengths and weaknesses of the approach, and (v)
draw conclusions.

2 . MODELLING SHAPES AND SPATIAL
RELATIONSHIPS

Our approach to modelling shapes and spatial rela-
tionships has been described previously Cootes et al.
(1995). The ¢rst step is to extract a vector representa-
tion of each example shape in a training set. We
describe the shapes using a set of landmark points
placed at similar positions on each exampleöthis is
illustrated in ¢gure 2, using the outline of a hand. In
this case, we can achieve a consistent representation
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Figure 1. An illustration of why variability must be learnt.
The unknown object is more likely to be an apple than a
ball, even though it is closer to the mean ball than the
mean apple.
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Figure 2. Examples from the training set are represented by
points placed on object boundaries at reproducible posi-
tions. Here, major landmarks are placed at the tips of the
¢ngers and the cracks between them, secondary landmarks
are equally spaced along the boundary.
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by choosing a set of primary landmark points at the tips
of the ¢ngers and the cracks between them, and then
adding equally spaced points to represent the rest of
the boundary. If there are n points, the result is a
vector xi � (xi1, yi1, xi2, : : : xin, yin)

T containing 2n ordi-
nates representing each example i. In order to
standardize this representation it is necessary to align
the set of examples into a common coordinate frame
using, for example, a Procrustes analysis (Goodall
1991).

The next step is to think about the set of training
examples in the vector space de¢ned by x. In ¢gure 3
we show a two-dimensional space de¢ned by just two
of the elements of x. Each of the small dots represents
an example shape, and the large dot is the mean
shape. The important observation is that the values of
di¡erent components of the vector will tend to be corre-
lated, and that it is these correlations which tell us
about the invariant properties of the class of shapes.
For example, if we consider x1 and x2 as the horizontal
positions of two points on the same edge of a ¢nger,
they will tend to move together as the hand changes
shape. This means that we can de¢ne a new coordinate
system b in which most of the variation in the training
set can be expressed. In general, we ¢nd that the
subspace in which `legal' examples of a class of shapes
are found has much lower dimensionality than the
shape space in which it is embedded.

The coordinate system, b, can be found by principal
component analysis (PCA) (or nonlinear equivalents;
Sozou et al. 1995a, b) and results in a linear model
which is able to reconstruct any of the examples in the
training set:

xi � �x� Pbi: (1)

A given example xi , can be reconstructed from a
weighted sum of the mean shape �x and a set of linearly
independent modes of variation, P.These modes are the
eigenvectors of the covariance matrix of the set of
training shapes; the weight vector bi is a set of shape
parameters which, given the model, provide a unique
description of the example shape. This is illustrated in
¢gure 4, which shows the shapes generated by a `hand'
model as elements of bi are varied. The training set
contained hand outlines in various `open' poses. The
important point to note is that, despite the high degree
of variability, the model is speci¢cöit only generates

`legal' examples of hand outlines. The shape parameters
are kept within limits determined from the training set.
Since the eigenvectors which form P are orthogonal,
equation (1) can be solved easily for the shape para-
meters:

bi � PT(xi ÿ �x): (2)

Although the illustrative example we have used so far
is a simple closed shape, it is important to note that,
since the basis for our representation is simply a set of
points, complex, multi-part objects can also be
modelled, allowing shapes and spatial relationships to
be treated in a uni¢ed manner. Examples are given
later in the paper.

3. MODELLING LOCAL GREY-LEVEL
APPEARANCE

In parallel with building a model of shape and
spatial relationships, we build a statistical model of the
grey-level pattern in the vicinity of each model point.
These local grey-level models are typically chosen to
represent the grey-level appearance along linear
pro¢les sampled at the model points, perpendicular to
the model boundary, and take the form of factor
models. These models are important in image search
and allow a matching score to be de¢ned between any
image patch and the expected grey-level pattern at a
given model point. Details have been described
previously (Cootes et al. 1994).

4 . INTERPRETATION: ACTIVE SHAPE
MODELS

So far we have seen how we can build statistical
models of shapes, spatial relationships and local grey-
level appearance. In this section we show how these
models can be used in automatic image interpretation.
We have investigated various methods (Hill & Taylor
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Figure 3. Example shapes plotted in a `shape space'. Points
on the modelled object tend to move in correlated ways, so
the `legal' variation lies in a subspace.

Figure 4. The e¡ect of varying the ¢rst three shape para-
meters of a `hand' model.
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1992), but the àctive shape model' (ASM) approach
described here is generally the most successful (Cootes
et al. 1995). It has much in common with the s̀nakes' or
àctive contours' of Kass et al. (1987), but with the
crucial di¡erence that we use the model to apply
global constraints to shapes and spatial relationships.
The idea is to place an initial model instance into the
image and to re¢ne it iteratively. Each model point
tries to move towards the appropriate image feature by
¢nding a point close to its current position at which
there is a better match to its local grey-level model.

This is illustrated diagrammatically in ¢gure 5,
which shows the current model contour and a set of
search pro¢les set up normal to it. At some position
along each pro¢leöhopefully at the true boundary
contour of the objectöwe ¢nd a better match to the
local grey-level model. The key step is that we try to
move towards these better matches by updating the
parameters of the modelöits position, scale, orienta-
tion and shapeönot the positions of the points
directly. This involves two steps: ¢rst, we cast the
proposed shape into the model frame by ¢nding the
translation, orientation and scale which align it as
closely as possible to the current model; second, we
compute new shape parameters using equation (2),
impose limits on their values to ensure a plausible
shape, and project back into the image using equation
(1). This ensures that our new estimate is always a
`legal' solution, because the model is only capable of
generating legal solutions.

In practice, the speed and robustness of ASM search
can be improved signi¢cantly by using a multi-resolu-
tion approach (Cootes et al. 1994a). During training, a
Gaussian pyramid is constructed from each image, and
local grey-level models are trained for each level of the
pyramid. For new images, ASM search starts at the
coarsest level of a similar image pyramid, using the
corresponding grey-level model; the search pro¢le
length is chosen to allow model points to move some
distance to their targets.When convergence is detected
at the current scale, the next ¢ner scale is selected, and
model re¢nement continues from the existing solution
using a shorter search pro¢le. This is repeated until a
solution has been found at the ¢nest scale. Using the

multi-scale approach, ASMs typically converge to the
correct solution, even given a very poor initialization.

5. PRACTICAL APPLICATIONS OF
ACTIVE SHAPE MODELS

In this section we show results from several practical
applications of object modelling and ASM search. In
each case a quantitative evaluation (beyond the scope
of this paper) has shown that accurate and robust inter-
pretation can be achieved. Analysis times are quoted
for a SunSparc 20 which operates at 44 m£ops. Other
examples of practical applications include analysis of:
industrial inspection images (Hunter et al. 1994), hand
gestures (Ahmad et al. 1995), echocardiograms (Cootes
et al. 1995), mammograms (Ellis 1997), surveillance
images (Baumberg & Hogg 1994). The method
extends to 3D and has been used to interpret 3D MR
images of the brain (Hill et al. 1993) and knee cartilage
(Solloway et al. 1996).

(a) DEXA images of the spine

DualenergyX-rayabsorbtiometry (DEXA) imagesof
the spine canbe obtainedquickly andat low patient dose.
An example image is shown in ¢gure 6a.There is consid-
erable interest in using these images to monitor the
progress of osteoporosis (Steigeret al.1994) bymeasuring
changes in the shapes of vertebrae over time. We have
shown that the shapes of the vertebrae can be recovered
automatically, using a statistical shape model of the
important structures and ASM search, with su¤cient
accuracy to be of potential clinical value (Smyth et al.
1996). Figures 6b, c show the model at initialization and
at convergence respectively. It canbe seen that the struc-
tures of interest are often poorly de¢ned, but the
anatomical knowledge captured in the model of the
whole spine prevents spurious solutions. The analysis
takes approximately 30 s on a SunSparc 2c.
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Figure 5. Active shape model (ASM) search. A search is
made along the normal at the current position of each
model point. The best match to the local grey-level model
for the model point is selected.

Figure 6. ASM search applied to DEXA images of the
spine: (a) original image, (b) initial model position, and (c)
solution after convergence of ASM search.
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(b) Radiographs of total hip replacements

Standard radiographs are routinely taken pre- and
post-operatively and as regular follow-up for patients
who receive hip replacements. Studies into the clinical
e¡ects of di¡erent prosthesis design and surgical tech-
nique require detailed measurements of the relative
positions of the components of the prosthesis and the
remaining bones in each radiograph (Walker et al.
1995).
We have shown that the positions of the prosthesis

and bones can be recovered automatically using ASM
search (Kotche¡ et al. 1996). Figure 7 shows an
example radiograph with the initial and ¢nal model
positions superimposed. The analysis takes approxi-
mately 60 s on a SunSparc 20.

(c) Face images

The location and recognition of faces in images is of
considerable interest for applications such as access
control, teleconferencing, human^computer inter-
action, and surveillance.We can locate faces in images
and their individual features accurately and robustly
using an ASM. We have used this as the basis for a
more sophisticated approach which also includes a
global model of grey-level appearanceöfurther details
of this aspect are given below. ASM search using a face
model is illustrated in ¢gure 8. The analysis takes
approximately 10 s on a SunSparc 20.

6. MODELLING GLOBAL GREY-LEVEL
APPEARANCE : FACES

So far, we have seen how models of shape and spatial
relationships can be generated and applied in image
interpretation. In this section we show how the idea
can be extended to deal with overall grey-level appear-
ance, using the example of face images. We have seen
how a face shape model can be ¢tted to a given face
image. Once this has been done we know the positions
of a set of landmark points. Using this information we
can warp the given face image (Bookstein 1989) to the
shape of the mean face to obtain a shape-free image
patch describing the grey-level appearance of the face,
decoupled from its shape.We can perform PCA on this
appearance vector, over the training set, obtaining a
shape-free eigenface model of similar form to the
shape model. Given a new face image we can now
fully describe its appearance as follows. First, we ¢t the
shape model guided by local intensity information.This
gives a set of shape parameters bshape. Next, we use this
shape information to warp the face image and extract
the shape-free patch, which we approximate using the
grey-level model to give bgrey. Together bshape and bgrey

provide a complete description from which the image
can be reconstructed (Lanitis et al. 1995). The dimen-
sionality of the model can be further reduced by
modelling the combination of bshape and bgrey in a
further PCA model which we have termed a c̀ombined
appearance model' (Edwards et al. 1996). Figure 9
shows the e¡ect of varying some of the most important
parameters of a combined appearance model. It is
interesting to note that, although the model is entirely
2D image-based, it is capable of modelling, convin-
cingly, changes in appearance arising from varying 3D
structure and pose.

If we take no precautions, the model we have just
described is likely to confound variation due to quite
di¡erent underlying causes. The appearance will
depend on the individual, their direction of gaze, their
expression, the lighting and so on. If we wish to inter-
pret the images, it is useful to separate out these
di¡erent sources of variation. This can be achieved by
applying canonical discriminant analysis rather than
PCA (McLachlan 1992). The result is a linear model
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Figure 7. ASM search applied to radiographs of total hip replacements: (a) original image with initial model position super-
imposed, and (b) solution after convergence of ASM search.

Figure 8. ASM search applied to face images: (a) original
image, (b) initial model position, and (c) solution after
convergence of ASM search.
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of the same form as equation (1), but where the appear-
ance space de¢ned by the vector of model parameters,
b, is partitioned into a set of orthogonal subspaces, each
coding for a di¡erent source of variability. Figure 10
shows the e¡ect of manipulating the parameters of a
model in which variation due to personal appearance
has been separated from other sources of variation,
using discriminant analysis. This allows us to take a
face image from an individual, ¢t the model and use it
to reconstruct the appearance, then vary the expression
and pose without changing the identity of the indivi-
dual.

We have used models of the types shown here
successfully to perform a range of face image interpre-
tation tasks including person recognition, expression
recognition, gaze determination and so on. The
approach is in each case the sameöto ¢t the model
and then to perform the recognition task using the
model parameters (Lanitis et al. 1995).

7. DISCUSSION

We are able to produce convincing 2D models of
familiar 3D objects, without recourse to knowledge of
3D structure. This provides some support for the c̀har-
acteristic views' model of natural vision (Koendrink &

Doorn 1976) by suggesting a mechanism that could
support it. For a region of the view-sphere within
which there is no change in image topology it is possible
to model the change in appearance with pose purely in
2D.When a`view catastrophe' is encountered a new 2D
model (of di¡erent topology) must be selected. Even if
this is not the mechanism used in general, it is concei-
vable that in might be used for important and familiar
objects such as faces.

It is interesting to contrast the e¡ects of model
complexity in our framework with the well-established
data-driven (Marr-like) approach (Marr 1982). The
role of the model in this top-down approach is to help
organize the image evidence. It is used to select that
evidence which is relevant; the selected evidence is
then used to update the model parameters. The key
point is that, whereas in the data-driven approach
there is an unhelpful combinatorial explosion as the
number of primitives in the model increases (Grimson
1990), here the combinatorics are on our side. If we
have m model points and if pd is the probability that a
model point thrown at random into the image will ¢nd
a match to its local grey-level model, then the chance of
¢nding an accidental (and erroneous) match to the full
model decreases exponentially with m (because pd < 1).
The chance of an accidental match is k( pd )m. This
means that the more complex the model, the less likely
we are to ¢nd an incorrect solution.

We should revisit two aspects of model building
which were mentioned without much comment near
the beginning. The ¢rst is the question of how we
de¢ne the outlines of the objects in the training set. At
present, all the experiments we have performed are
with hand annotated training examples. This is clearly
not entirely satisfactoryöeither practically or intellec-
tually. We have started to look at this problem and
have published some very preliminary results
(Robinson 1996). Since we plan to use the shape loci in
image search, we would like to ¢nd a way of automati-
cally selecting points and contours which are distinctive
and should thus be easy to ¢nd in new images.We have
looked at an approach where we measure a multi-scale
set of di¡erential invariants of the image intensity func-
tion, at each pixel, to provide a signature at each point.
We then estimate the probability density function for
these signatures using a kernel method (Silverman
1986) and choose the loci of low probability as those
which should be used for model building. For face
images, this results in selecting points which seem intui-
tively useful, some of which were already included in
the hand-annotated model.

Finally, even when the shape loci have been located,
we are left with the problem of where to place the land-
mark points. As we made clear in ½ 2, it is important to
ensure that these are placed consistently on the shape
boundaries in the training set. If not, a non-speci¢c
model results. We have tried to tackle this by treating
landmark placement as an optimization problem. We
de¢ne a measure of the quality of model generated and
try to optimize this with respect to the positions of the
landmarks on the set of training examplesöa massive
optimization problem. The objective function we have
used is one which tries to make the model compact, in
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Figure 9. E¡ect of varying three of the most important
parameters of the face combined appearance model.

Figure 10. E¡ect of isolating identity parameters from
others. The identity of a real individual is kept constant
whilst parameters associated with other forms of variability
are modi¢ed.
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the sense that the training set ¢ts into as small a volume
of shape space as possible.We have produced very good
models completely automatically using Genetic Algo-
rithm search to optimize the objective function
(Kotche¡ & Taylor 1997). This is again work in
progressöat present there are problems scaling this to
very complex objects and large training sets.

8 . CONCLUSIONS

In summary, we have shown that complex and vari-
able objects can be modelled realistically, and that these
models can be used e¡ectively in image interpretation.
From an engineering point of view, this approach has
opened the way to developing practical systems to
solve di¤cult image interpretation problemsöparticu-
larly in medical image analysis and face recognition,
but also in other application domains. Although we
were not motivated by a desire to gain insight into
natural vision, it is tempting to ask whether there are
lessons to be learnt. Although the approach has proved
successful there are still a number of signi¢cant
problems to solve if it is to become completely auto-
maticöat present it is automatic at image-
interpretation time, but involves manual intervention
at training time. Our viewpoint is that vision is essen-
tially a statistical problem, and there are far more
sophisticated methods that can be brought to bear
than those which have been deployed to date.
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